Genes controlling multiple functional pathways are transcriptionally regulated in connexin43 null mouse heart.

نویسندگان

  • Dumitru A Iacobas
  • Sanda Iacobas
  • W E I Li
  • Georg Zoidl
  • Rolf Dermietzel
  • David C Spray
چکیده

We have used mouse 27k cDNA arrays to compare gene expression patterns in four sets of three hearts each of neonatal wild types and four sets of three hearts each of littermates lacking the major cardiac gap junction protein, connexin43 (Cx43). Each individual set of hearts was hybridized against aliquots of an RNA standard prepared from selected mouse tissues, allowing calculation of variability and coordination of gene expression among the samples from both genotypes. Overall variance of gene expression was found to be markedly higher in wild-type hearts than in those from Cx43 null littermates. Expression levels of 586 of 5,613 adequately quantifiable distinct genes with known protein products were statistically altered in the Cx43 null hearts, 38 upregulated and 548 downregulated compared with wild types. Downregulation was confirmed for seven tested genes by quantitative RT-PCR. Functions of proteins encoded by the altered genes encompassed all functional categories, with largest percent changes in genes involved in intracellular transport and transcription factors. Among the downregulated genes in the Cx43 null hearts were those related to neuronal and glial function, suggesting that cardiac innervation might be compromised as a consequence of Cx43 deletion. This was supported by immunodetection of sympathetic innervation, using antibodies to the synaptic vesicle protein synaptophysin and to the adrenergic nerve terminal marker tyrosine hydroxylase. These findings reinforce the proposal that the cardiac abnormality in Cx43 null animals may be contributed by altered innervation and indicate that Cx43 deletion has consequences in addition to reduced intercellular communication.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gene Expression Profile Analysis during Mouse Tooth Development

Introduction: Complex molecular pathways involve in development of different tissues such as teeth. Differential gene expression patterns during teeth development generates different tooth types. Teeth development results from interactions between oral epithelium and underlying ectomesenchyme cells with neural crest origin. Teeth development are regulated by different signaling networks. In thi...

متن کامل

Centronuclear myopathy in mice lacking a novel muscle-specific protein kinase transcriptionally regulated by MEF2.

Myocyte enhancer factor 2 (MEF2) plays essential roles in transcriptional control of muscle development. However, signaling pathways acting downstream of MEF2 are largely unknown. Here, we performed a microarray analysis using Mef2c-null mouse embryos and identified a novel MEF2-regulated gene encoding a muscle-specific protein kinase, Srpk3, belonging to the serine arginine protein kinase (SRP...

متن کامل

Identification of key genes and pathways involved in vitiligo vulgaris by gene network analysis

Background and Aim: Vitiligo vulgaris is an acquired, chronic skin and hair condition characterized clinically by loss of melanin, which, if untreated, is typically progressive and irreversible. The aim of the present study was to identify potential genes involved in the pathogenesis of vitiligo. Methods: One dataset of mRNA expression in patients with vitiligo (GSE65127) were obtained from ...

متن کامل

I-11: Dedifferentiation of Mouse Fibroblast Cells by Chemical Induction

Induced pluripotent stem cells (iPSCs) generated by ectopic expression of four transcription factors have great promises for regenerative medicine in humans. Since the initial report of iPSCs by viral transfection, ample efforts have been made in the generation of iPSCs through nonviral approaches. Small molecules offer the advantages of low cost without genomic modification and have been used ...

متن کامل

Tissue- and stage-specific Wnt target gene expression is controlled subsequent to β-catenin recruitment to cis-regulatory modules

Key signalling pathways, such as canonical Wnt/β-catenin signalling, operate repeatedly to regulate tissue- and stage-specific transcriptional responses during development. Although recruitment of nuclear β-catenin to target genomic loci serves as the hallmark of canonical Wnt signalling, mechanisms controlling stage- or tissue-specific transcriptional responses remain elusive. Here, a direct c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physiological genomics

دوره 20 3  شماره 

صفحات  -

تاریخ انتشار 2005